A POD-EIM reduced two-scale model for crystal growth
نویسندگان
چکیده
Complex physical models depending on microstructures developing over time often result in simulation schemes that are very demanding concerning computational time. The two-scale model considered in the current presentation describes a phase transition of a binary mixture with the evolution of equiaxed dendritic microstructures. It consists of a macroscopic heat equation and a family of microscopic cell problems modeling the phase transition. Those phase transitions need to be resolved by very fine computational meshes leading to the demanding numerical complexity. The current study presents a reduced version of this two-scale model. The reduction aims at accelerating the microscopic model, which is parametrized by the macroscopic temperature, while maintaining the accuracy of the detailed system. Parameter dependency, non-linearity, time-dependency, coupled field-variables and high solution complexity are challenging difficulties. They are addressed by a combination of several approaches: Proper Orthogonal Decomposition (POD), Empirical Interpolation Method (EIM) and a partitioning approach generating sub-models for different solution regimes. A new partitioning criterion based on feature extraction is applied. The applicability of the reduction scheme is demonstrated experimentally: while the accuracy is largely maintained, the dimensionality of the detailed model and the computation time are reduced significantly.
منابع مشابه
Extension Ability of Reduced Order Model of Unsteady Incompressible Flows Using a Combination of POD and Fourier Modes
In this article, an improved reduced order modelling approach, based on the proper orthogonal decomposition (POD) method, is presented. After projecting the governing equations of flow dynamics along the POD modes, a dynamical system was obtained. Normally, the classical reduced order models do not predict accurate time variations of flow variables due to some reasons. The response of the dynam...
متن کاملAffine Decompositions of Parametric Stochastic Processes for Application within Reduced Basis Methods ?
We consider parameter dependent spatial stochastic processes in the context of partial differential equations (PDEs) and model order reduction. For a given parameter, a random sample of such a process specifies a sample coefficient function of a PDE, e.g. characteristics of porous media such as Li-ion batteries or random influences in biomechanical systems. To apply the Reduced Basis Method (RB...
متن کاملLocalized Model Reduction in Porous Media Flow
This paper introduces a new localized approach to construct an efficient reduced order model for fluid flow simulation and optimization in porous media flow. For nonlinear systems, one of the most common methodology used is the proper orthogonal decomposition (POD) combined with discrete empirical interpolation method (DEIM) due to its computational efficiency and good approximation. Whereas re...
متن کاملمقایسه اثر روشهای آمادهسازی بذر اسپرس بر بهبود تحمل تنش قلیایی و بازیابی آن
Germination is the first and the most stages for sainfoin (Onobrychis viciifolia) growth; which it has especially sensitivity to environmental stresses such as alkalinity. The current study was conducted to evaluate the effectiveness of seed pre-treatment methods on improving sainfoin tolerance to alkali stress in germination, early growth and its recovery as a factorial experiment based o...
متن کاملPOD/DEIM reduced-order strategies for efficient four dimensional variational data assimilation
This work studies reduced order modeling (ROM) approaches to speed up the solution of variational data assimilation problems with large scale nonlinear dynamical models. It is shown that a key ingredient for a successful reduced order solution to inverse problems is the consistency of the reduced order Karush-KuhnTucker conditions with respect to the full optimality conditions. In particular, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Adv. Comput. Math.
دوره 41 شماره
صفحات -
تاریخ انتشار 2015